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Abstract

Deep learning methods have demonstrated great performance for RNA secondary structure prediction. However, generalizability is a common unsolved issue on unseen out-of-distribution
RNA families, which hinders further improvement of the accuracy and robustness of deep learning methods. Here we construct a base pair motif library that enumerates the complete
space of the locally adjacent three-neighbor base pair and records the thermodynamic energy of corresponding base pair motifs through de novo modeling of tertiary structures, and we
further develop a deep learning approach for RNA secondary structure prediction, named BPfold, which learns relationship between RNA sequence and the energy map of base pair motif.
Experiments on sequence-wise and family-wise datasets have demonstrated the great superiority of BPfold compared to other state-of-the-art approaches in accuracy and generalizability.
We hope this work contributes to integrating physical priors and deep learning methods for the further discovery of RNA structures and functionalities.
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e a Ablation study of BPfold under five configurations of BP motifs (BPM) on family-wise
dataset Rtam12.3-14.10. b Violinplot.

e Correlation of F1 score and confidence index on Archivell and Rfam12.3-14.10 datasets.
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codes: github.com/heqin-zhu/BPfold
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e Performance comparison on bpRNA-TS0, Archivell, Rfam12.3-14.10, and PDB datasets.
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e Visualization of predicted RNA secondary structures of three examples. ® 23288 o 8 o00

e a Comparison of inference time. b Inference time of BPfold on RNA targets within 038°e2 o0 3o

different lengths.
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